The Journal of Systems & Software 189 (2022) 111300

Contents lists available at ScienceDirect

SOFTWARE
The Journal of Systems & Software

-

journal homepage: www.elsevier.com/locate/jss

DigBug—Pre/post-processing operator selection for accurate bug N

Check for

localization

Kisub Kim?, Sankalp Ghatpande ®, Kui Liu ¢, Anil Koyuncu ¢, Dongsun Kim ¢,
Tegawendé F. Bissyandé °, Jacques Klein®, Yves Le Traon®

4 Singapore Management University, Singapore

b Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
¢ School of Computer Science and Engineering, Kyungpook National University, South Korea

4 The Software Engineering Application Technology Lab at Huawei, China

€ Faculty of Engineering and Natural Sciences, Sabanci University, Turkey

ARTICLE INFO ABSTRACT

Article history:

Received 6 October 2020

Received in revised form 28 January 2022
Accepted 7 March 2022

Available online 14 March 2022

Bug localization is a recurrent maintenance task in software development. It aims at identifying
relevant code locations (e.g., code files) that must be inspected to fix bugs. When such bugs are
reported by users, the localization process become often overwhelming as it is mostly a manual task
due to incomplete and informal information (written in natural languages) available in bug reports. The
research community has then invested in automated approaches, notably using Information Retrieval
techniques. Unfortunately, reported performance in the literature is still limited for practical usage.
Our key observation, after empirically investigating a large dataset of bug reports as well as workflow
and results of state-of-the-art approaches, is that most approaches attempt localization for every bug
report without considering the different characteristics of the bug reports. We propose DIGBUG as
a straightforward approach to specialized bug localization. This approach selects pre/post-processing
operators based on the attributes of bug reports; and the bug localization model is parameterized
in accordance as well. Our experiments confirm that departing from “one-size-fits-all” approaches,
DicBuc outperforms the state-of-the-art techniques by 6 and 14 percentage points, respectively in
terms of MAP and MRR on average.

Keywords:

Bug report

Bug localization

Fault localization

Bug characteristics
Information retrieval
Operator combination

© 2022 Published by Elsevier Inc.

1. Introduction users. A bug report describes an occurrence of unexpected behav-
ior of the software. The report may contain additional artifacts
such as stack traces or logs that provide information about a
crash within the software. Upon receiving a bug report, an effort
must be undertaken to localize the relevant snippet of code that
leads to unexpected behavior. In general, bug localization based
on textual reports focuses on identifying the relevant buggy file
within the code repository.

However, this process of bug localization is inherently com-
plex due to the large and ever-growing code repository combined
with the time taken to perform this process manually. Automat-
ing bug localization is thus viewed as an important endeavor for

Bugs are prevalent in software development processes. Ex-
tensive testing and code reviews help detect and address many
of these before the software system is released. However, many
bugs persist in the code even after the software has been shipped.
These bugs are later discovered by end-users who report them
to the development team. During the entire lifetime of a project,
large numbers of bug reports may overwhelm the available re-
sources of the development team. For example, Apache Hive
(Hive, 2020) project has recorded more than 22k bug reports in
its 12 years of existence.

Users fill in bug reports and, in most cases, are written in
natural language. These reports may be provided by internal or
even external developers; and more often authored by software

* Corresponding author.
E-mail addresses: kisubkim@smu.edu.sg (K. Kim), contact@sghatpande.eu
(S. Ghatpande), brucekuiliu@gmail.com (K. Liu), anil.koyuncu@sabanciuniv.edu
(A. Koyuncu), darkrsw@knu.ac.kr (D. Kim), tegawende.bissyande@uni.lu
(T.F. Bissyandé), jacques.klein@uni.lu (J. Klein), Yves.LeTraon@uni.lu (Y.L. Traon).

https://doi.org/10.1016/j.jss.2022.111300
0164-1212/© 2022 Published by Elsevier Inc.

the cost and time efficiency of the development and maintenance
process (Huo et al., 2019b).

The software engineering community have attempted to ad-
dress the bug localization problem, mainly by viewing it as an
information retrieval (IR) problem: a bug report is viewed as an
input query while the collection of source code files within the
code repository is treated as the search space; relevant files are
then matched, and a ranked list of suspicious files is presented
to the development teams. Several different IR methods (Gay

https://doi.org/10.1016/j.jss.2022.111300
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111300&domain=pdf
mailto:kisubkim@smu.edu.sg
mailto:contact@sghatpande.eu
mailto:brucekuiliu@gmail.com
mailto:anil.koyuncu@sabanciuniv.edu
mailto:darkrsw@knu.ac.kr
mailto:tegawende.bissyande@uni.lu
mailto:jacques.klein@uni.lu
mailto:Yves.LeTraon@uni.lu
https://doi.org/10.1016/j.jss.2022.111300

K. Kim, S. Ghatpande, K. Liu et al.

et al., 2009; Lukins et al., 2010; Rao and Kak, 2011) have been
leveraged for this task by state-of-the-art approaches (Gay et al.,
2009; Lukins et al., 2010; Saha et al.,, 2013; Wong et al., 2014;
Koyuncu et al.,, 2019a; Wang and Lo, 2016; Youm et al., 2017;
Lam et al., 2017; Schroter et al., 2010; Ye et al., 2014).

In the last decade, many approaches have been proposed to
improve the application of IR techniques. Generally, these ap-
proaches attempt to leverage additional information such as simi-
larity to bug reports associated with revision history (Youm et al.,
2017), considering more fine-grained attributes (e.g., the dis-
tinction between method names Tantithamthavorn et al. (2018),
stack traces tokens Rahman and Roy (2018), and the natural lan-
guage tokens Loyola et al. (2018)), different algorithms (e.g., vec-
tor space model Liu et al. (2019) and latent semantic indexing
Lukins et al. (2010)).

Unfortunately, as concluded in a recent study by Lee et al.
(2018), the performance of the state-of-the-art research is still
rather limited. Generally, for any given project, the state-of-the-
art approach provides results that are below 70% in terms of
Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR).
Recent attempts to improve these results include the approach
of ‘Divide & Conquer’ by Koyuncu et al. (2019a) that investigated
the impact of dividing bug reports into groups to improve the
performance of localization. Another study by Panichella et al.
(2016) showed the impact on performance when considering the
removal of special characters, identifier splitting.

We study the importance of the pre/post-processing opera-
tors (e.g., tokenization, stopword removal, stemming, and pres-
ence of code entities) that must be applied explicitly to different
bug reports to achieve the best localization performance with
a standard IR method. Applying different configurations of bug
localization techniques has been studied by Thomas et al. (2013).
Their study, however, still focuses on the ‘one-configuration-fits-
all’ strategy rather than considering attributes of different reports
and applying different configurations depending on the different
attributes. Similarly, the study by Binkley et al. (2015) focused
more on the impact of choosing different query configurations to
improve the performance.

In this work, we propose DIGBUG as an IR-based bug localiza-
tion technique, which learns to apply specific pre/post-processing
operators to different groups of bug reports based on their char-
acteristics. Our hypothesis here is that different operators are
effective depending on the attributes of a bug report. These at-
tributes include ‘having an attachment?’, ‘written by a developer or
a user’, ‘containing a stack trace’. Our preliminary study (Section 3)
partially confirms the hypothesis. Based on the result of the
preliminary study, we design DiGBuG, which applies different
combinations of pre/post-processing operators to each bug report
according to its attributes.

We evaluate the performance of DiGBUG against the subjects
from Bench4BL (Lee et al., 2018), the most significant available
benchmark for bug localization. As a result, DIGBUG achieves
a better performance if the combination of pre/post-processing
operators is selected specifically for the attributes and charac-
teristics of the subject. Overall, building on a simple classical
VSM-based approach, the evaluation results show that DiGBuc
outperforms the state-of-the-art IRBL techniques up to 6 and 14
percentage points in MAP and MRR, respectively.

The contributions of our approach can be summarized as
follows:

e We motivate the study by investigating the role of pre/post-
processing operators and identify the combination of oper-
ators that provide better performance for different subjects.
This already implies that we have to consider different op-
erators for different characteristics and motivate the main
approach’s hypothesis.

The Journal of Systems & Software 189 (2022) 111300

) 5 AMQP | AMOP-660
Q Invalid [GenericMessagd requeued indefinitely (1)
(2) B

~ Details

18/0cY16 4:54 PM
30/NoV/16 919 PM
28/0ct16 3:27 PM

¢ we sl had a ot of

Fig. 1. Example of bug reports excerpted from https://jira.spring.io/browse/
AMQP-660.

e We build a tool named DiGBug, an IR-based bug local-
ization technique that selects a best-performing pre/post-
processing operator combination based on the character-
istics of incoming bug reports. The operators are applied
before (i.e., pre-processing), and after (i.e., post-processing)
any IR technique performs localization.

e We evaluate the performance of DIGBUG on one (Lee et al.,
2018) of the most significant benchmark designed for bug
localization. The evaluation measures MAP and MRR against
the state-of-the-art bug localization benchmark. The results
show that DiGBUG can locate bugs with high accuracy and
outperform the existing state-of-the-art techniques.

The remainder of the paper is organized as follows. Section 2
presents background details on IR-based bug localization such
as pre/post-processing operators and performance metrics. In
Section 3, we conduct a preliminary study on investigating the
varying impact of the common operators in bug localization that
forms the RQ1 in this study. The details of our approach are intro-
duced in Section 4. We raise further research questions (i.e., RQ2
and RQ3), evaluate the tool, and discuss its results in Section 5.
After discussing related work in Section 6, we conclude our work
in Section 7.

2. Background & meotivation
2.1. Bug localization & IRBL

Bug localization is a software maintenance task that pinpoints
the location of suspicious code within the program that is poten-
tially responsible for defects or issues. In many cases, the informa-
tion about these defects and issues comes in bug reports created
by users and developers who have discovered them. These bug
reports comprehensively describe the context of a particular bug
within the software that users and developers discover. The bug
reports consist of textual sentences and paragraphs; instead, they
also consist of different metadata and attributes, including code-
related entities, log files detailing the issues, and information
about affection version of the software. An example of a bug
report can be seen in Fig. 1 that consists of (1) summary (the
title of the report), (2) metadata (e.g., type and priority), and (3)
description. It specifies attributes such as code entity (e.g., Gener-
icMessage, invokeListener), reporter (on the right-hand side), and
stack trace in the description.

On receipt of such bug report, there are two lines of techniques
available to localize the bug: spectrum-based fault localization
(SBFL) (Abreu et al., 2007, 2006; DiGiuseppe and Jones, 2014;
Wong et al., 2016) and information retrieval based bug localiza-
tion (IRBL) (Zhou et al., 2012; Wen et al., 2016; Youm et al., 2015;

https://jira.spring.io/browse/AMQP-660
https://jira.spring.io/browse/AMQP-660

K. Kim, S. Ghatpande, K. Liu et al.

Wong et al,, 2014; Saha et al., 2013; Wang and Lo, 2014b). The
former line of techniques can be applied only when test cases as-
sociated with the bug are given as they use coverage information
(i.e., spectra). Based on the information, SBFL techniques provide
a ranked list of suspicious locations (generally, specific lines or
blocks in a program). IRBL, on the other hand, takes textual
information from bug reports to figure out suspicious locations
(often files). These approaches leverage techniques derived from
natural language processing such as Latent Dirichlet Allocation
(e.g., Blei et al. (2003)), Vector Space Model (e.g., Salton et al.
(1975)), Latent Semantic Analysis (e.g., Dumais et al. (1988)), and
Clustering (e.g., Jain et al. (1999)).

Generally, many bug reports are submitted without any test
case (Koyuncu et al., 2019b), due to which IRBL techniques are
widely applied for bug localization. In addition, it is lightweight
and scalable, and it relies mainly on static information such as
bug reports and source code. One of the key intuitions behind
IRBL is the existence of common tokens in bug reports and source
code. For example, users who submit a bug report often mention
a specific functionality or an error message. This information is
in the form of tokens that are likely to be matched with tokens
found in source code files. Many bug reports contain stack traces
(e.g., the trace mentioned in the example bug report) and code
entities (e.g., method and class names like invokeListener in the
example bug report) that increase the accuracy in detecting the
location of defects. This task is also regarded as identifying feature
locations (Dit et al., 2013), in which the input query is a set of
tokens from a bug report, the data source is the text (tokens) in
source code files, and the output is a subset (or ranked list) of
source code files in a subject.

2.2. Pre/post-processing operators for IRBL

Bug localization with information retrieval techniques re-
quires the raw input data (source code files and bug reports)
to be pre-processed that includes reducing noise, extracting at-
tributes, and improving the resulting model. Therefore, IRBL ap-
proaches need to apply relevant pre-processing operators on the
inputs (Thomas et al., 2013). Similarly, some post-processing
operators (e.g., filters for irrelevant test files and re-order the
ranked list of suspicious files with specific information) may be
leveraged to adjust further the outputs yielded by the IR ranking
system.

In this work, we focus on the pre/post-processing operators
that are listed in Table 1 as they are commonly adopted in
recent IRBL studies. In our work, we apply the default pre-
processing (i.e., preBasic, the basic pre-processing operator
for tokenization commonly used for natural language processing
(NLP) tasks (Chong et al., 2014; Sun et al., 2014)) that is applied by
all the techniques in the literature. Along with the basic operator,
stop word removal (SWR) and stemming (STM) are widely chosen
by several IRBL techniques (Kochhar et al., 2014; Rahman et al,,
2017; Kiling et al., 2016; Rath et al,, 2018; Tian et al., 2016).
Dropping out special characters (SPC) and splitting on camel case
(cMC)! are common operators to process, in particular, the text
in programs. For our study, we consider a single post-processing
operator (CE), which prioritizes source files whose name appears
as code entities (such as Custom variable name, Method name,
Class name) in the bug reports. This operator is implemented
following the insights highlighted in recent bug localization ap-
proaches (Wen et al, 2016; Saha et al, 2013; Wang and Lo,
2014b). After the retrieval process, CE of the bug report can be
checked/matched from the Code Entity database. We designed it

T Note: Underscore splitting is similar to this operator but we address CMC
in this work since experiment subjects are written in Java.

The Journal of Systems & Software 189 (2022) 111300

Table 1
Pre/post-processing operators used in this study.

Pre-processing operators

Name Description

preBasic Tokenizing words by white space, tab, and new line characters.

SWR Removing the stop words (e.g., “I"” and “She”).

STM Stemming to find the root of each words (e.g., “consultant”
and “consulting” — “consult”).

SPC Cleaning up special characters and keywords (e.g., “/” — *”
(empty string)).

CMC Splitting camel cases (e.g., “JavaClass” — “Java Class”).

Post-processing operator

CE Extracting code entities (e.g., Custom variable name, Method
name, Class name) from the bug reports or related
attachments after parsing it, then emphasizing a high rank on
this, if one exists.

assuming we store all the source code tokens already in practice.
It relies on the weights upon the number of entities found in the
report. The higher the number of detected code entities, the lower
is the weight assigned to it in the ranking process.

2.3. Performance metrics

Bug localization techniques are generally evaluated by com-
paring the localization estimations against ground truth data,
inferred by considering details from the fix patched developed
for a set of resolved, and thus closed bug reports: files that are
impacted by these patches are considered as bug locations. The
assessment of localization performance is usually conducted by
considering MAP and MRR as they are two representative per-
formance metrics for most IR-based bug localization approaches
(e.g., Qi et al. (2021), Lee et al. (2018), Wen et al. (2016)).

e Precision: More accurately referred to as Precision@k, is the
metric that represents an estimation of how many files are cor-
rectly recommended within the given top k files. It is expressed
as follows:

__# of buggy files in top k
- k
e Average Precision (AP): This aggregates precision values of

several positively recommended files for a single bug report.
The average precision of a given report is computed by:

P(k) (1

N

AP — Z P(i) - pos(i) 2)

of positive instances

i=1
where N is the number of ranked files by a given IRBL tech-
nique, i is a rank in the list of recommended files. pos(i) in-
dicates whether the ith file in the ranked list is a buggy file
(i.e., pos(i) € {0, 1}). For example, AP = 0.5 represents that an
IRBL technique can make correct recommendations with 50%
of probability within top k recommendations.

e Mean Average Precision (MAP): The MAP is computed by
taking the mean value of AP for a set of bug reports rather than
a single one:

18
MAP = ;APU) 3)

where M is the number of given reports. AP(j) is the average
precision of the jth report. If MAP = p, at least one file is likely
to be a correct recommendation for every 11) file in the ranked
list.

K. Kim, S. Ghatpande, K. Liu et al.

e Mean Reciprocal Rank (MRR): This computes the mean value
of the position of the first buggy file in the ranked list given by
an IRBL technique, following this equation:

M

1 1
MRR = M ;f—rank,' ()
where M is the number of all bug reports and f-rank; means
the position of the first buggy file in the ranked list for the
ith bug report. For example, assuming MRR = 0.5, an IRBL
technique can locate at least one correct file to fix within top
two recommendations (i.e., ﬁ == =2)

3. Preliminary study

We hypothesize that all pre/post-processing operators are
neither necessary nor effective on all inputs (i.e., bug reports
and source code), and thus should not be uniformly applied by
IRBL techniques. However, in most of the existing IRBL studies,
all the pre/post-processing operators selected in the study are
applied blindly. We claim that each input from a different project
(subject) may have specific characteristics, and the results of
applying each pre/post-processing operator could have varying
impacts on the performance of IRBL.

We motivate the need for a selective approach by investigating
the varying impact of the common operators listed in Section 2.2.
The key indicator of impact is the performance of a straightfor-
ward approach to bug localization. Therefore, the objective of this
preliminary study is to show how different combinations of the
operators affect the results of IRBL. To conduct this study, we
sample a subset of subjects from a bug localization benchmark
(cf. Section 3.1 for details) and apply all possible combinations of
operators with a baseline IR technique (cf. Section 3.2 for details).

3.1. Subjects

For this preliminary study, we select four mid-sized (in terms
of the number of bug reports) projects, MATH, SHDP, LDAP, and
SWS, from the Bench4BL (Lee et al., 2018) benchmark. Bench4BL
is a comprehensive, reproducible package of six state-of-the-art
techniques for bug localization that were executed on a large
dataset of 9459 bug reports collected from 46 Java projects. The
four projects are selected since they have enough bug reports but
not too many to show the impact of operator combinations on
the bug localization performance. We use the same benchmark
to evaluate our approach as shown in Section 5. The full list of
subjects of Bench4BL is listed in Table 2. It should be noted that
for our experiment we only consider the initial information from
the bug report i.e. we do not consider additional information and
attachment provided after the bug has been reported.

3.2, Study design

Our preliminary study focuses on addressing the following
research question:

e RQ1: Do different operator combinations have different im-
pacts on the performance of bug localization?

To answer the RQ1, we apply every possible combination
of pre-processing operators as shown in Table 1 on a specific
technique named BugLocator (Zhou et al., 2012) to check if they
actually affect the bug localization approach. Among them, pre-
Basic is always turned on for any subject since the tokenization
step is necessary for building input queries. We then apply all the
combinations of pre/post-processing operators (5 pre-processing

The Journal of Systems & Software 189 (2022) 111300

Table 2
Subjects used in our study, Bench4BL (Lee et al., 2018).
Group Subject # Source # Major # Bug
files (Max) versions reports

CAMEL 14,522 60 1,469
HBASE 2,714 70 836
HIVE 4,651 21 1,241
CODEC 115 9 42
COLLECTIONS 525 7 92
COMPRESS 254 15 113

Apache CONFIGURATION 447 11 133
CRYPTO 82 1 8
CSv 29 3 14
10 227 13 91
LANG 305 16 217
MATH 1,617 15 245
WEAVER 113 1 2
ENTESB 252 3 47
JBMETA 858 5 26
ELY 68 3 25

IBoss SWARM 727 6 58
WFARQ 126 1 1
WEFCORE 3,598 16 361
WELY 8,990 11 984
WFMP 80 1 3
AMQP 408 33 108
ANDROID 305 2 11
BATCH 1,732 33 432
BATCHADM 243 4 20
DATACMNS 604 33 158
DATAGRAPH 848 4 60
DATAJPA 330 38 147
DATAMONGO 622 40 271
DATAREDIS 551 17 49
DATAREST 414 23 132
LDAP 566 5 53
MOBILE 64 3 11

Spring ROO 1,109 15 714
SEC 1,618 42 541
SECOAUTH 726 7 101
SGF 695 19 107
SHDP 1,102 9 45
SHL 151 3 11
SOCIAL 212 4 15
SOCIALFB 253 5 15
SOCIALLI 180 1 4
SOCIALTW 153 5 8
SPR 6,512 12 130
SWF 808 20 134
SWS 925 25 174

Total 61,431 690 9,459

and 1 post-processing) to every subject. We prepare 32 (= 2°) dif-
ferent combinations by alternatively activating and deactivating
each different operator with the other five operators. Each pre-
processing operator is applied to all the bug reports and source
code files before feeding them to bug localization techniques,
while the post-processing operator (if it is activated in the com-
bination) is applied after obtaining a ranked list of suspicious
files.

To implement a bug localization pipeline, DIGBUG is built
based on the Vector Space Model (VSM) (Salton et al., 1975) to
conduct IRBL. The choice of using this model is based on the perfor-
mance results (Thomas et al., 2013) that classified VSM as the best
among all the IR-classification techniques including Latent Semantic
Analysis (LSI) and Latent Dirichlet Allocation (LDA). VSM computes
the similarity between tokens of an incoming bug report and
tokens of each source code file. While existing techniques apply
more advanced modelization techniques (e.g., r'VSM in BugLoca-
tor (Zhou et al., 2012)), we use VSM as a baseline technique in
our study to focus on unequivocally highlighting the impact of
pre/post-processing operator combinations.

K. Kim, S. Ghatpande, K. Liu et al.

[SPC, SWR, STM, CI
SPC. C

\I}maas.u CI
[SWR, STM. C
STM. C]

'WR, CI
[SPC, SWR, ST
SPC:

SPC, SWR]
[SPC, CMC, SWR, STM:
SPC, STM.

Operator Combination

0 10 20 30 40 50 60
Mean Reciprocal Rank (%)
(a) MATH

[SPC, (M([p§WR ST
WR, STM, CE

Operator Combination

0 10 20 30 40 50 60 70
Mean Reciprocal Rank (%)
(c) LDAP

The Journal of Systems & Software 189 (2022) 111300

[sre e,
[SPC, CMC, SV 6
CMC, C

[CMC.SWR. C

[SPC, CMC, SWR, STM.
[SPC, CMC. STM.

CI

CI

ESP Cl

[CMC, SWR, STM, (I
CMC, STM, C

C

C

C]

C]

M

SPC, STM, Cl
PC, SWR, C
[SPC, SWR, STM,
IpreBasic,
[SPC, CMC, SW]
WR, CI
[SPC, CMC, SWR,
[SPC, C[l\gC, ST!
[SWR, STM, CE
[CMC,

Operator Combination

g T
[emc, WR T™
Wi

(B, S
[SPC, SWR. STM.
[prehaslkc

STM
[SWR, STM|

0 10 20 30 40 50 60
Mean Reciprocal Rank (%)
(b) SHDP

LCMC, 8
[SPC, MC SWR, STM, CE
SPC, STM.

SPC. SWR
[CMC, STM, CE
[CMC, CE

[CMC, SWR, CE

[CMC, SWR, STM, C|
[preBasic, C|

R, C]

SPC, CMC, SWR, STM
[SW] TM (E

Operator Combination

STM
[SWR, STM

0 10 2 30 40 50 60
Mean Reciprocal Rank (%)
(d) SWS

Fig. 2. Results (MRR) of four sampled subjects for every combination.

3.3. Results

One of the primary findings of our preliminary study is that
each combination of operators” shows different performances. To
check the performance difference on the processing operators,
we applied different operators to an existing approach named
BugLocator (Zhou et al., 2012). We applied all the pre-processing
operator combinations, and it already showed a performance
range from 38.2% to 39.9% for MAP and from 50.6% to 52.5%
for MRR, respectively. This results indicate that operator combi-
nations has impact on existing techniques even only with pre-
processing combinations for overall results. Further experiment
driven by the former founding includes all the 32 (=2°) operator
combinations and we apply them to sample subjects. For exam-
ple, the localization performance for the subject MATH, ranged
from 38% to 59% whereas the best one is achieved with SPC,
SWR, STV, and CE operators while the worst one is with SWR as
shown in Fig. 2(a). To be explicit, the best operator combination of
the sample projects we have; MATH, SHDP, LDAP, SWS are [SPC,
SWR, STM, CE], [SPC, CMC, CE], [SPC, SWR, STM, CE], and [SPC, CE]
respectively. The results from other subjects are similar to the one
for MATH. In particular, the MRR value of the best combination
for SHDP has improved 33.3 percentage points (32.9% — 66.2%)
against the worst one.

Similarly, in our baseline localization technique, it achieves
the best performance for MATH when all the operators except
CMC are activated. However, for SWS, the best performance is
retrieved when SPC along with CE is activated. The operator
combination of SPC, SWR, and CE performs better for MATH, LDAP,
and SWS. In contrast, in the case of SHDP, such combination
performs 9.5% less in terms of MRR. This confirms our hypothesis

2 1n our results, the preBasic indicates the results from VSM without any
pre/post-processing involved in.

that the “one-combination-fits-all” strategy is not the best option
for performance.

Table 3 shows the results of our preliminary study compar-
ing with other IRBL tools for the four sampled subjects. Except
for the MRR of SHDP, our approach outperforms all the ex-
isting techniques. Overall, this preliminary study reported an
average improvement of up to 11.0% and 17.4% for MAP and MRR,
respectively.’

Our preliminary study results indicate that considering different
operator combinations significantly affects the bug localization
performance on the subjects. This answers our RQ1.

Based on the results of this study, we motivate the following
hypothesis: different combinations of operators may lead to
a better bug localization if we can identify the relationships
between the characteristics of subjects and operators. Here,
the challenge is how to find the best performing operator com-
bination for each subject. In the above preliminary study, the
unit of the subject is coarse-grained (i.e., project), but it is also
able to search for the best combination for a finer-grained subject
(i.e., bug report). This forms the basis of our motivation to study
the possible operator combination that performs best for a sub-
ject. To this end, we describe our tool DIGBUG that selects the best
combination of operators for different bug reports in Section 4.

4. DiGBUG — Operator Selector for IRBL
This section describes DiGBUG, a tool for selecting a combi-
nation of pre/post-processing operators used in IRBL. Based on

the motivation discussed in Section 3, this tool first identifies the
characteristics of the incoming bug report. These characteristics

3 This is the results for preliminary study.

Table 3

MAP and MRR for sample subjects (single version matching (Lee et al., 2018) for projects).

BugLocator (Zhou et al.,, 2012) BRTracer (Wong et al.,, 2014) BLUIR (Saha et al., 2013) AmaLgam (Wang and Lo, 2014b) BLIA (Youm et al,, 2015) Locus (Wen et al.,, 2016) Pre-study

Subject MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

MATH 0.1563 0.2173 0.1586 0.2274 0.1952 0.2413 0.2122 0.2627 0.1765 0.2394 0.1895 0.2251 0.4376 0.5882
SHDP 0.4433 0.6279 0.4652 0.6734 0.3899 0.5184 0.3897 0.5184 0.4654 0.6222 0.4633 0.5826 0.4835 0.6617
LDAP 0.4401 0.6344 0.4875 0.7197 0.4681 0.6251 0.4681 0.6251 0.4824 0.6665 0.3857 0.5058 0.5238 0.7286
SWS 0.4002 0.5400 0.4211 0.5872 0.3811 0.4886 0.3811 0.4886 0.3969 0.5456 0.4177 0.5680 0.4317 0.5898
Average 0.3600 0.5049 0.3831 0.5519 0.3586 0.4684 0.3628 0.4737 0.3803 0.5184 0.3641 0.4704 0.4692 0.6421

‘Ip 30 1T *Y ‘apupdipyn S wiy Y

00111 (ZZ0Z) 681 a1pMifos B SwalsAS Jo (puinof ayf

K. Kim, S. Ghatpande, K. Liu et al.

The Journal of Systems & Software 189 (2022) 111300

T NN N NN R R R R R AR AR AR AN RN R NN AR EAAREAAREAAEREEEEREEEEREEEREEEEEEEEEEEEEEREEg,
. .

Buckets \:

Bucket-combination pairs

B, B, —> 0C,

B, oc, i

Searching for

the best operator B; > 0C, :

B i combination H :
2 H

[
.
. 0

o+

LTI

g o
Y E AR R RN N AR R RN AR AR AN AR AR EEEEE AN AN EEANNANNANNASEENNAAREEREEEESEEESEEEEEsEEsEssssssnssnmannns®

Training Bug reports

H annotated with
attributes

B

E — 2 | :

— > ¥ —
: _]‘ Extracting *“x Bucketing
features Vel

: Bug reports —

" Localization

H Buckets
Annotated

bug report

: B,

—
—> |=x
Extracting ""]‘
attributes

.
by | §

Bug Report

B,
Bucketing

L

.
.
.
.
.

Suspicious files &

IRBL technique . :

a.java :

c 8 > I

4 Applying the C¢ Localization with] .
best operator the operators H

combination

Fig. 3. Overall procedure for training and localization of DiGBuG.

allow the tool to apply the correct combination of operators for a
bug report. Finally, the tool compares the similarity between the
bug reports and source code files and provides a ranked list of
suspicious code files.

DIGBUG consists of two phases as shown in Fig. 3: (1) Training*
and (2) Localization. The intuition here is that it is possible to fig-
ure out the best performing combination of pre/post-processing
operators if we can characterize the bug reports. Besides, we
make two assumptions (1) the bug reports can be characterized
by their attributes such as the presence of stack trace, attachment,
and type of reporter, etc. (2) the bug reports can be grouped by
computing the similarity between them based on the attributes.

In the training phase, the tool takes a set of bug reports
as training data, and extracts attributes from each report (Sec-
tion 4.1). The attributes characterize a bug report, and DiGBuc
decides a bucket (By) where a bug report belongs, based on its
attributes. The tool searches for the best combination of pre/post-
processing operators (OCy) for each bucket by applying every
combination exhaustively.

The localization phase starts with an incoming bug report,
which is the input of bug localization. In this phase, DIGBUG first
extracts attributes of the report used to determine the bucket
where the report belongs. Since the training phase already identi-
fied the best combination, the tool applies the identified operator
combination to the bug localization of the report. The operators
are used before (pre-processing) and after (post-processing) ap-
plying any IRBL technique to subjects (bug reports). In this work,
we use a baseline bug localization with VSM as described in
Section 3.2. As a result, DIGBUG gives a ranked list of suspicious
source code files corresponding to the incoming report.

4.1. Attribute extraction

To characterize bug reports, DIGBUG uses five attributes as
shown in Table 4. These are all binary attributes and make 32
combinations, which will correspond to each bucket later. We

4 This training process can be regarded as ‘searching’ rather than that
of machine learning since it tries every possible combination of operators.
Nevertheless, we use the term ‘training’ since it depends on the training data.

Table 4
Features used for characterizing bug reports.

Code entity

Is any code entity available in the report?

Description Is a description provided?

Stack trace Does the report contain any stack trace?

Developer or user Whether the report is submitted by a developer or user?
Attachment Does the report have an attachment?

select these attributes since they are already adopted by ex-
isting techniques (Wen et al., 2016; Wong et al., 2014; Youm
et al,, 2015) to characterize bug reports and improve the bug
localization performance.

The extraction of the attributes follows the below heuristics.
Code Entity is positive if a bug report has any camel-case word or
parenthesis; and we have Code Entity database to check since the
source code should be already exists. If the description section
of a bug report is not empty, the Description attribute is on for
the bug report. Stack trace is positive if any stack trace is given
for a bug report. To accurately extract the stack traces from
the bug report, we utilized the tool infoZilla (Bettenburg et al.,
2008). infoZilla is a library that helps extract structural data from
unstructured data sources such as bug reports. This tool is a
well-known method to extract Stack Traces with an accuracy of
98.5%.

To identify whether the submitter of a report is a developer or
user, the tool looks up the revision history of the subject where
the report belongs. If the submitter has committed any changes
to the subject, our tool regards the submitter as a developer;
otherwise, it is a user. The attachment information can be directly
accessed by looking up the metadata of a bug report.

4.2. Bucketing

Based on the attributes of each bug report, DIGBUG classifies
bug reports into 32 buckets as described in Section 4.1 (i.e., five
binary attributes and their combinations). As shown in Fig. 3, each
bucket (B4, By, . ..) contains bug reports with the same character-
istics based on the five attributes. We assume that an identical
operator combination can treat bug reports in a bucket.

K. Kim, S. Ghatpande, K. Liu et al.

Algorithm 1: Training phase of DiGBuG.

Input: a set of bug reports (for training): R = {ry, 2, ..., Tn}

Input: a set of operators: O = {01, 0,, ..., Om}

Input: attribute extraction function: f : R — {0, 1}

Input: bug localizer: localizer : R x 2° — P(S) where P(x) is
permutations of a set x and S is a set of source code files in a
subject.

Input: bucketing function: bk : R x {0, l}“ — B

Output: a map of a bucket and an operator combination:

BC = {(bi, 0G), (b;, 0Gy), ..., (bm, 0G;)}

1 Function train(R, f)

2 /| produce a map of report (r; € R) and attribute tuple (f; € {0, 1}¥).

3 Ry := R.map{(r;, f(r:))} ;

4 || produce a map of report (r; € R) and bucket (b; € B).

5 Ry := R.map{(r; — bk(Rs(r))};

6 /| obtain all combinations of operators.

7

8

9

0C = C(0);
|| output: bucket-operator combination map.
BC = ¢;
10 foreach Vb; € B do
11 || collect all bug reports belonging to b;.
12 R; := R filter(Ry(r) == b;);
13 /| find the best combination (‘MRR’ is a function computing
MRR values).
14 OCpest := argmax{MRRy;cg, {localizer(r, oc;)}};
ocje0C
15 /| add the best combination of the given bucket.
16 BC := BC + (bj — OCpest);
17 return BC;

4.3. Searching for the best-performing combination

Once bug reports in training data are assigned to different
buckets, DIGBUG identifies the best operator combination for each
bucket by trying to apply all possible combinations to the reports
in a bucket exhaustively. We use MRR as the metric to compare
different combinations and figure out the best one.

Algorithm 1 shows in detail the training phase of DiGBUG. As
a function, the phase takes five input arguments and produces
a map (BC) that tells us which operator combination performs
best for a given bucket. The input arguments are a set of bug
reports (R) for a training purpose, a set of available pre/post-
processing operators (0), a function f that extracts attributes from
a bug report, and a bug localizer to be used for evaluating the
performance of an operator combination (oc € 2°) for a given
set of reports in a bucket. As shown in the algorithm, DicBuc
first extracts attributes of each bug report in R (Line 3) and then
assigns them (Line 5) into different buckets (b € B and |B| = 2¥
where k is the number of attributes). After obtaining a set of
operator combinations (Line 7), the tool exhaustively searches for
the best operator combination for every bucket (Lines 10-16) and
returns the result (Line 17).

4.4. Localization

Once the pair of buckets and operator combinations are trained,
DIGBUG takes a newly submitted bug report and provides the best
combination of pre/post-processing operators for the report in
the localization phase. Furthermore, in this phase, the tool first
extracts attributes from the incoming bug report to find its cor-
responding bucket and then retrieves the best combination found
in the training phase. The retrieved combination is plugged into
an IRBL technique. The operators in the combination are applied
in the pre/post-processing steps of the technique resulting in the
list of suspicious files.

The Journal of Systems & Software 189 (2022) 111300

5. Evaluation

This section describes the experimental setup, dataset for
training, and localization used to assess the performance of DiG-
Buc and report its results. The aim is to investigate if the selection
of a particular operator combination impacts bug localization
performance when considering different bug reports.

5.1. Experimental setup

The outcome of our preliminary study and its results allow us
to propose further research questions:

e RQ2: Is the best operator combination different for an indi-
vidual bucket decided by the characteristics?

e RQ3: Does our bucketing approach provide significant im-
provement over the state-of-the-art?

In this evaluation, to implement the approach described in
Section 4, we use the following configuration. First, the five
operators (four for pre and one for post processing) listed in
Table 1 to generate the set of operator combinations (note that
preBasic is always activated as a baseline operator, and thus it
is not included in the generation of combinations). Furthermore,
the same configuration used for the bug report is applied to the
source code within the dataset. Second, we leverage the same
IR-technique (i.e., VSM) as with the preliminary study described
in Section 3 since our objective is to focus on investigating the
impact of operator selection on bug localization. In practice, any
IRBL technique can be plugged into DiGBUG instead of the baseline
localizer.

We address our RQ3 by considering the results of the six
popular IRBL techniques (Zhou et al., 2012; Wong et al., 2014;
Saha et al,, 2013; Wang and Lo, 2014b; Youm et al.,, 2015; Wen
et al., 2016), which are reported in Bench4BL (Lee et al., 2018).
The results are obtained with the following configuration (1)
single version matching and (2) test files included, which are
listed in the literature Bench4BL (Lee et al., 2018). We take the
same condition to make the comparison fully fair. The former is
selected for simplicity since multi-version matching increases the
complexity of the evaluation. The latter is chosen as Bench4BL's
results suggested (Lee et al., 2018).

5.2. Dataset

To evaluate our approach, we leverage two different datasets:
one from D&C (Koyuncu et al., 2019a) that has approximately 20K
bug reports for the training and the other from Bench4BL (Lee
et al,, 2018) for localization (i.e., evaluation). The training phase
was conducted using different dataset due to the lack of the
number of bug reports for the test, and we devised as this cross-
project setting generalizes the approach. We leverage this step
to segregate/separate the buckets based on the attributes. This
training allows generalizing the attributes for each bucket.

Training dataset: D&C dataset has 19,600 bug reports and fur-
thermore contains additional subjects (e.g., Apache WICKET Wicket
(2020)). This dataset is curated by considering only bug re-
ports since the Bench4BL dataset contains all the issue reports,
including bug reports and discarding every report that is not
completely paired with source code. The bug reports that are
considered in the dataset are the ones marked as RESOLVED,
FIXED or CLOSED. Because of the curation phase, D&C ends up
having 4467 intersections (i.e., the same bug reports as from
Bench4BL) of the bug reports. We discard them from the training
phase to generalize the buckets and their corresponding operator
combinations. Finally, we ended up having 15,133 bug reports in
the training phase for our approach.

K. Kim, S. Ghatpande, K. Liu et al.

Table 5

Number of features used for characterizing bug reports.
Code entity 5,191
Description 9,459
Stack trace 1,137
Reporter as developer 2,511
Reporter as user 6,948
Attachment 6,210

Dataset for localization To assess the approach, we use the
dataset that consists of bug reports and source code pairs from
Bench4BL (Lee et al., 2018). The use of source code and bug report
pairs allows training for the retrieval of potential buggy files. The
dataset has 9459 bug reports in total and 61,431 source code to
index. We use all the 9459 bug reports to predict the potential
buggy source files in the localization phase.

Table 5 shows the numbers for each feature extracted from
the bug reports. We hypothesized that there are bug reports
that do not contain the body (i.e., description) since we found
several ones in practice (e.g., Django (2013)). However, all of the
Bench4BL’s bug reports include descriptions. While recent IRBL
studies often use outdated datasets (so-called “old subjects” Lee
et al. (2018)) to evaluate their techniques, we employ Bench4BL
since the corresponding study based on the benchmark shows
that the latest subjects are more effective and reliable to assess
IRBL techniques.

5.3. Experimental results

As a result of the training phase of our experiment, we obtain
a list of buckets that consist of the attributes of the bug reports.
Furthermore, it also results in the best operator combination for
individual buckets. A list of the attributes, its operator combina-
tion, and the number of bug reports for each bucket are presented
in Table 6. In our result, there are cases where the operator
combinations are not available due to the lack of corresponding
attributes of the bug reports®.

We found that applying incorrect operator combinations for
a particular bucket leads to inaccurate localization. The results
imply that applying an operator CMC (i.e., CamelCase splitting) on
“code entity” would potentially change the entity itself, leading
towards lower accuracy for the localization. A stack-trace is a
list of the method calls captured in the middle of the execution
of the application. This stack-trace is neither a natural language
free-form text nor the standard source code. We discovered that
bug reports with only stack-trace included should be treated with
only the SPC operator. This means other operators (i.e., SWR, CMC,
STM) impediment for the accurate localization since stack-trace
likely consist of information relevant for debugging, applying
the operators would alter its meaning and context. For example,
stack-trace may have the keyword “..connections.”. which, upon
application of STM would change to “connect” thereby changing
the context of the stack-trace. The operator SPC is constantly
being applied, and it indicates that special characters (e.g., #, $
and %) need to be removed as they do not provide meaningful
information for the localization. Another attribute, such as the CE
(code-entity), is applied to every bucket with any form of code-
entity present to extract practical terms from the code, such as
the class names, method names, and parameter types. As a direct
result, each bug report requires a different operator combination
based on its attributes for accurate IRBL performance. This sup-
ports our main claim that a one-size-fits-all does not fit every bug
report.

5 For example, Index 32 of Table 6 as it cannot be a bug report with just
stack-trace inside it; Index 6 of Table 6 as there is no bug report with those
particular set of attributes within our dataset.

The Journal of Systems & Software 189 (2022) 111300

RQ2 is addressed by the results that demonstrate bug reports can
be classified into different buckets by their attributes, and the best
operator combination is different for an individual bucket.

Table 7 shows the aggregated MAP and MRR for all the sub-
jects described in Table 2. It shows that DiGBUG achieves better
results than the existing state-of-the-art techniques. The im-
provements are up to 8.0% and 12.6% of MAP and MRR, respec-
tively for the aggregated results. It also indicates that DicBuc
can achieve at least 3.5% and 4.4% improvement against the best-
known results from Locus and BRTracer. Additionally, we use
the Mann-Whitney U test (Mann, 1947) to identify whether the
differences are significant. This statistical test is applied between
Di1GBuUG and each technique. If the result has a p-value lower than
0.01, it is indicated by a single asterisk. If it is lower than 0.001,
then it is denoted with a double-asterisk. The test results clearly
show that the differences are mostly significant except for those
of the Locus (Wen et al.,, 2016).

Table 8 shows the results of our approach for all the evaluated
subjects. The results in the table are project-independent, unlike
Table 7. In the majority of the cases, our approach outperforms
the six state-of-the-art techniques. On average, DIGBUG provides
improvements from 6.8% to 9.6% and 9.4% to 14.9% for MAP and
MRR, respectively. These results show that application of different
operator combinations brings better localization results based on
different buckets of bug reports. Additionally, it indicates that
the cross-project training and localization setting works where
insufficient data is available for the training.

For example, DIGBUG’s result for COLLECTIONS subject achieves
up to 34% and 58.7% points against the worst ones, while the
result for the SOCIALTW subject shows improvements of 30%
and 40% points in terms of MAP and MRR, respectively. Note
that other existing techniques often use a single set of pre/post-
processing operators without considering the different charac-
teristics of each bug report. Thus, some necessary tokens can
be remove, or other unnecessary tokens may not be filtered out
during pre/post-processing. Our bucketing approach can assign
an appropriate set of the operators, and this may lead to better
performance. We can expect performance improvement with a
more precise bucketing technique.

The result for the subject DATAGRAPH shows that DiGBuG
achieves the worst results as compared to others. We manually
investigate the reason for this and found that 12 out of the 60
bug reports contain code entities in them. A more detailed check
of the bug report reveals that the keyword “QueryResult” often
appears in them. As the subject is related to the popular NoSQL
language, it is natural for the users to mention this keyword,
thereby populating the bug report with the keyword that gener-
ates noise for our dataset. The key takeaway is to be careful when
considering bug reports that may contain such ‘noisy’ keywords.

It is well known that the presence of code entities (e.g., method
or class names) within a bug report improves the performance of
the localization (Wen et al., 2016). However, our results from DiG-
Buc provide new insights; for subjects such as ENTESB, SHL, SO-
CIALTW, WEAVER, applying the CE operator does not significantly
impact the performance. Furthermore, the best performance for
specific subjects such as BATCHADM, CSV, and DATAGRAPH are
retrieved when the post-processing operator CE is deactivated.

Additionally, we observed that what issue reports are success-
fully localized. Among a total of 9459 reports, 5184 (i.e., 54.80%)
has code entities, and most of them are written by develop-
ers to prioritize after pre-processing steps and analysis. 82.99%
(i.e., 4302 reports) of the corresponding 5184 reports are success-
fully ranked in at least the top 10. This implies that code entities
being provided by developers are helpful for better performance
on bug localization as stated in (Wen et al.,, 2016).

K. Kim, S. Ghatpande, K. Liu et al.

Table 6

The Journal of Systems & Software 189 (2022) 111300

Bucket-operator combinations and the number of reports per each bucket found in this study with the setup

described in Sections 5.1 and 5.2.

Index Bucket by attributes Operator combination # of Reports
1 code-entity, developer, attachment, description, stack-trace SPC, CE 74
2 code-entity, developer, attachment, description SPC, CE 740
3 code-entity, developer, attachment N/A
4 code-entity, developer, description, stack-trace SPC, CE 79
5 code-entity, developer, description SPC, SWR, STM, CE 402
6 code-entity, developer, stack-trace N/A
7 code-entity, developer N/A
8 code-entity, user, attachment, description, stack-trace SPC, CE 332
9 code-entity, user, description, stack-trace SPC, SWR, STM, CE 194
10 code-entity, user, attachment, description SPC, SWR, STM, CE 2280
11 code-entity, user, attachment N/A
12 code-entity, user, attachment, stack-trace N/A
13 code-entity, user, stack-trace N/A
14 code-entity, user, description SPC, STM, CE 1090
15 code-entity, user N/A
16 developer, attachment, description, stack-trace SPC, CMC, SWR 57
17 developer, attachment, description SPC, CMC, SWR 666
18 developer, description, stack-trace SPC 51
19 developer, description SPC, CMC 442
20 developer, stack-trace N/A
21 developer, attachment N/A
22 developer, attachment, stack-trace N/A
23 user, attachment, description, stack-trace SPC, SWR, STM 222
24 user, description, stack-trace SPC 129
25 user, attachment, description SPC, CMC, SWR 1839
26 user, description SPC, CMC, STM 869
27 user, attachment N/A
28 user N/A
29 developer N/A
30 code-entity N/A
31 attachment N/A
32 stack-trace N/A
Table 7
Summary of MAP/MRR of IRBL techniques for the subjects (aggregated results).
BugLocator BRTracer BLUIR Amalgam BLIA Locus DicBuc
MAP 0.3052* 0.3330* 0.2881** 0.2906** 0.3014* 0.3289 0.3681
MRR 0.4223** 0.4690** 0.3869** 0.3899** 0.4155** 0.4430 0.5134

#: p-value < 0.01, #x*: p-value < 0.001.

Addressing RQ3, the evaluation results indicate that applying
different operator combinations to different buckets improves
the performance of bug localization over the state-of-the-art
techniques.

5.4. Threats to validity

As in any empirical assessment, our study bears some threats
to validity.

External validity: Our experiments examine only Java sub-
jects. However, the same process in the study can be applied
to other subjects that are implemented in other programming
languages. Another threat to the validity of our study is that our
subjects are all based on an open-source development model.
The practice in the software industry may involve projects with
specific characteristics that may affect the performance of the
IRBL techniques with varying levels of success. The evaluation
of the approach has been conducted with “Single version” of
each subject. Bench4BL (Lee et al, 2018) already shows that
considering multiple versions of subjects can derive better per-
formance. However, our goal is to show the varying impact of
the operator combinations (i.e., processing strategy). Therefore,
considering multi-version is outbound of the approach. Although
we applied the combinations of the operators to the baseline
(i.e., VSM) technique and it outperforms the other techniques,
it may retrieve different impact if we apply such operators on

10

each technique. It may depend on an experimental environment
or specific characteristics.

Internal validity: We use our implementations for the differ-
ent pre-processing operators, which may carry some limitations.
We also relied on the simple VSM baseline for the comparison to
determine the effect of pre/post-processing operators. The latter,
however, is commonly used in the literature, which mitigates the
threat to validity. It should be noted that the training process of
DIGBUG could be time-consuming and might require significant
resources, but it is a one-time cost. Although there would be
changes towards the software maintenance over time, the need
for re-training would be relatively low as the attributes required
for DIGBUG would be retained.

If the number of buckets and possible combinations increase,
the computation cost would be much higher. It would be easy to
make the process parallel and the potential improvement in the
localization phase can compensate for the cost.

5.5. Discussion & future work

Pre/post-processing operators: In this study, we use data
processing operators that are commonly used in state-of-the-art
bug localization techniques and well-known for text retrieval.
Fig. 4 shows the MRR results for the sampled buckets (Index# 2,
9, and 25 in Table 6) from our experiment (shown in Tables 7 and
8 of Section 5). These buckets classify the bug reports based on
their attributes without considering the subjects. When applying
the different operator combinations to each bucket, the results

K. Kim, S. Ghatpande, K. Liu et al.

The Journal of Systems & Software 189 (2022) 111300

Table 8
MAP and MRR for each subject listed in Table 2 (single version matching for projects).
Subject BugLocator BRTracer BLUIR AmaLgam BLIA Locus DicBuG
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

CAMEL 03235 04621 03646 05270 03005 04188 0.3032 04210 03097 04451 0.3986 0.5571 0.3355 0.4816
HBASE 02993 0.4168 0.3463 04884 0.2818 0.3938 0.2820 0.3942 03094 0.4258 03084 0.4059 = 0.3678 0.5198
HIVE 02693 0.3670 03178 04521 0.2769 0.3914 0.2772 03916 0.2412 0.3312 = 0.3310 04580 02670 0.3921
CODEC 0.6227 0.8341 0.6333 08199 = 0.7011 0.8625 07011 0.8625 0.6914 0.8829 03519 0.4087 0.6574 0.8953
COLLECTIONS 02318 0.3327 0.2319 0.3457 0.2174 0.2659 02191 0.2659 0.2493 0.3606 0.2670 0.3090 = 0.5567 0.8532
COMPRESS 05637 0.7545 05747 0.7976 0.4874 0.6382 0.4816 0.6345 05797 0.7822 = 0.5872 0.7801 05377 0.7452
CONFIGURATION 0.0378 0.0480 0.0385 0.0530 0.0413 0.0502 0.0413 0.0502 0.0345 0.0476 0.0299 0.0430 @ 0.6082 0.8143
CRYPTO 0.1622 02665 0.1711 0.3044 0.1982 0.3974 0.1982 03974 0.1588 0.3616 0.1118 0.3421 0.1686 0.3105
10 0.7640 0.8574 0.7508 0.8809 0.6797 0.7332 0.6784 0.7309 = 0.7744 0.8489 0.4053 04322 05689 0.6826
LANG 05371 0.6446 0.5426 0.6441 0.5327 05783 05367 0.5810 0.5349 0.6423 05810 0.6181 = 0.7556 0.8936
MATH 0.1563 02173 0.1586 0.2274 0.1952 02413 0.2122 0.2627 0.1765 02394 0.1895 0.2251 & 0.4422 0.5971
WEAVER 0.6212 0.6666 0.6331 0.7500 0.6637 0.6666 0.6637 0.6666 0.5695 0.6666 0.4996 0.5500 = 0.7679 1.0000
Csv 0.6104 0.6677 0.6108 0.6784 0.6075 0.6369 0.6313 0.6845 0.4048 0.6429 0.6554 0.6970 = 0.7872 0.9167
ENTESB 0.0559 0.0511 0.0542 0.0624 = 0.0652 0.0775 0.0652 0.0775 0.0314 0.0638 0.0555 0.0704 0.0491 0.0682
JBMETA 0.2442 04387 0.2351 04312 0.1805 0.3233 0.1832 0.3258 0.2078 0.3698 0.2534 0.3639 0.2913 0.4601
ELY 0.0587 0.1506 0.0668 0.1587 0.1098 0.1962 0.1098 0.1962 0.0939 0.1667 = 0.1260 0.1667 0.1161 0.2118
WFARQ 0.5000 0.5000 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 0.1111 0.1111 05000 0.5000 = 1.0000 1.0000
WEFCORE 0.3202 04444 03326 04687 0.2552 03392 0.2565 0.3402 0.2830 0.3834 = 0.3607 0.4607 0.3389 0.4414
WELY 02283 0.3196 0.2572 0.3623 0.2099 0.2972 02104 0.2982 0.2118 0.2994 0.2562 0.3500 = 0.2628 0.3736
WEMP 04534 05833 0.2675 0.2398 0.6818 0.8333 0.6818 0.8333 0.5000 0.6667 0.6226 0.7778 = 0.8254 1.0000
SWARM 02936 03852 03326 04317 03412 03960 0.3412 03960 0.2708 0.3608 0.2651 0.3656 | 0.3664 0.4638
AMQP 04426 0.6205 = 04775 0.6754 04196 05691 04210 0.5694 04626 0.6661 0.4533 0.6229 04245 0.6447
ANDROID 0.3626 05121 03536 05904 03761 0.4747 03761 04747 03138 05076 0.0796 0.0698 0.3660 0.6894
BATCH 03186 0.4848 03284 05023 0.2805 0.3941 0.2933 04124 03158 04735 03664 0.5449 0.3721 0.5662
BATCHADM 0.3218 04325 03479 05011 03657 0.4806 03657 0.4806 04313 05724 0.4322 0.6252 04458 0.5869
DATACMNS 04565 05916 04683 0.6429 04581 05632 04581 0.5632 05133 0.6670 @ 0.5244 0.6482 05134 0.6701
DATAGRAPH 0.1519 0.2384 0.1592 0.2497 0.1714 0.2788 0.1718 0.2788 0.1426 0.2577 0.1609 0.2578 0.0116 0.0690
DATAJPA 0.4822 06649 04892 0.6854 04769 06170 04767 06170 0.5311 0.7098 0.4769 0.6329 04975 0.6836
DATAMONGO 04582 0.6344 0.5095 0.6965 04519 05769 04519 0.5769 = 0.5212 0.6807 0.4861 0.6322 03783 0.5231
DATAREDIS 05353 0.7627 0.5561 0.8081 0.5801 0.7626 = 0.5813 0.7637 0.5717 0.8082 0.4999 0.7259 04493 0.6761
DATAREST 0.3492 05458 03939 0.6372 03550 05125 0.3584 05162 03651 05730 0.3802 05974 & 0.3956 0.5722
LDAP 04401 0.6344 04875 0.7197 04681 0.6251 0.4681 0.6251 0.4824 0.6665 0.3857 0.5058 = 0.5291 0.7335
MOBILE 0.6909 0.8864 0.7116 09545 09224 1.0000 09224 1.0000 0.7285 0.8939 0.5042 0.5862 0.7855 0.9545
ROO 0.1164 0.1628 0.1293 0.1821 0.0910 0.1283 0.0928 0.1297 0.1001 0.1422 0.1208 0.1811 = 0.3360 0.4353
SEC 0.3209 0.4237 03368 04438 03087 0.3736 03133 0.3788 03502 0.4496 03145 0.3857 = 04922 0.6300
SECOAUTH 0.1983 0.3659 0.2128 0.3965 0.1381 0.2620 0.1430 0.2714 0.1891 0.3522 0.1990 0.3683 = 0.3205 0.5542
SGF 04173 0.6546 04223 0.6850 03591 05973 03589 0.5970 03682 0.6174 04359 0.7245 04039 0.7026
SHDP 0.4433 06279 04652 0.6734 03899 05184 0.3897 05184 04654 0.6222 04633 05826 = 04745 0.6631
SHL 0.2533 04037 0.2621 04166 0.2827 0.4220 0.2828 0.4221 0.2836 0.4015 = 0.3251 0.4579 02992 0.5121
SOCIAL 06110 0.6937 0.5900 0.6726 0.1979 0.2245 0.2496 0.3000 0.5285 0.5689 = 0.6569 0.7029 05888 0.6541
SOCIALFB 05541 06416 0.6156 0.7401 04818 06167 04818 0.6167 0.4064 05301 0.5382 0.6929 04849 0.6234
SOCIALLI 04711 0.6250 = 0.6384 0.7083 03929 0.3958 0.4504 0.4166 0.2989 0.3208 0.4081 0.6875 0.5837 0.8750
SOCIALTW 0.7382 0.7937 0.6750 0.7292 03814 04271 05014 0.5833 05594 0.6188 0.5456 0.6250 = 0.9009 1.0000
SPR 03074 04684 = 03377 0.5165 0.2061 0.3284 0.2182 0.3386 0.2878 0.4319 0.0169 0.0241 03021 04721
SWF 0.3812 04758 03974 05060 03647 0.4579 03613 04548 04038 05015 @ 04384 0.5502 03174 0.4548
SWS 0.4002 0.5400 04211 05872 03811 04886 03811 0.4886 03969 0.5456 0.4177 0.5680 = 0.4460 0.6093
Average 0.3821 05064 03922 05299 03767 04746 0.3836 0.4827 03644 04930 0.3649 04757 | 0.4603 0.6234

The highlighted values in purple (n.nnnn) and green (n.nnnn) background denote the highest MAP and MRR, respectively for each project.

vary for each combination. As the results indicate, if an unsuit-
able operator combination processes a bug report, it significantly
decreases the performance.

Categorization of bug reports: For the categorization of the
bug reports, we focused on the attributes of the available re-
ports in most issue tracking systems. Our future work includes
discovering additional attributes from bug reports that would
potentially lead to a better categorization.

Information retrieval model: We use VSM (i.e,, the most
basic one for IR-based bug localization) instead of other com-
plex models such as deep learning techniques. Although the
deep learning techniques may show better results, our goal is
to show that different operator combinations should be applied
depending on the characteristics of bug reports and even subjects.

Furthermore, deep learning based approaches still lag com-
pared to the time of the classical approaches. For instance, Lam
etal. (2017) presented a simple deep learning approach that com-
bines rVSM and DNNs (Deep Neural Networks) where they re-
ported the time of a couple of minutes to retrieve one prediction
(i.e., results for a bug). When compared to DiGBuUG, it takes around

11

0.6 s on average for retrieving one prediction. Additionally, the
performance of the former provides a limited improvement of
2.8% points in terms of MAP against that of the LR (Ye et al,
2014), which is a VSM-based approach that integrates functional
decompositions, bug-fixing history, API descriptions, and code
change history for bug localization.

However, it will be worth comparing with approaches such
as Deeploc (Xiao et al., 2019) or DreamLoc (Qi et al., 2021)
since such approach also shows a significant improvement com-
pared to an approach (i.e., BugLocator (Zhou et al., 2012) and
BRTracer (Wong et al., 2014)) in our experiment, even though it
used a different dataset than ours. It will guide if our approach
also has a significant impact on learning-based approaches.

Classifying bug reports: Our study assumes that the bug
reports in the benchmark (Lee et al., 2018) are correctly classified
as “bug”. However, DIGBUG might not be effective if the classifica-
tion is incorrect. Antoniol et al. (2008) discovered that many issue
reports are labeled as “bug” even though they are enhancements,
refactoring/restructuring, and organizational issues due to lack of
better classification support. For example, a simple organizational

K. Kim, S. Ghatpande, K. Liu et al.

SpC,
“MC, §WR ST

[[(M(,[SWR (,E

[cMmc, SWR STM CF
[preBasic, CE

[SWR. CE

[SWR, STM. CE

T™, CE

[SPC,

Operator Combination

0 10 2 30 40 50 60
Mean Reciprocal Rank (%)
(a) Bucket Index 2

[SPC, SWR, STM
[SPC, STM.

[SPC, CMC, SWR s
[SPC. CM

[CMC, SWI
[CMC. SWR, STM. C
CMC, STM. C

SWR, STM, C

SWR) CI

[preBasic, CI

™, Cl
[SPC, SWR, ST
SPC, ST!
SPC, SWR
I3
[SPC, CMC, SWR
C) CMC;
[SPC, CMC, WR STM!
[SP(, (,M(, STM

Operator Combination

[preBasic

0 10 2 30 40 50 60
Mean Reciprocal Rank (%)
(b) Bucket Index 9

[SPC. CMC, SWR]
[SPC, CMC, SWR, CE]
SPC, CMC

SP CMC CT
SPJ CMC STM CE

MC, SWR, ST
CMC SWR, STM“C)E

[SPC

ISP, SWR STV
[SPC. SWR, STRM, CE!

SWR
[SPC, QWR CE

Sl" S
M[C, SWR, ST
[CMC, SWR, GTM CI

Operator Combination

0 5 10 s 2 25 30 35 40
Mean Reciprocal Rank (%)
(c) Bucket Index 25

Fig. 4. Results (MRR) of three sampled buckets for every combination.

issue may contain stack traces in a report. Thus, the classification
accuracy may affect the performance of DIGBUG.

Applying the operator combinations to different domains
or considering various features of the query (vocabulary):
While optimizing pre/post processing on VSM improves the per-
formance of bug localization, different IR techniques might react
differently to such processing. This can be a worthwhile candidate
for future research direction. Additionally, expanding the vocab-
ulary with acronym/abbreviation (Binkley et al., 2012) from the
bug report or checking the length of the query (vocabulary) and
apply those as one of the features can be an interesting study to
conduct in the future for the field of bug localization.

6. Related work
Rao and Kak (2011) undertook a comparative study on the

different IRBL techniques. The conclusion of their study showed
that IRBL techniques are as effective as other fault localization

12

The Journal of Systems & Software 189 (2022) 111300

techniques. One particular conclusion of the study was that com-
plicated models (such as LDA) do not outperform simpler models
such as the VSM. Building up on this conclusion, DiGBUG employs
the VSM to validate its approach. Our work, DicBuG employs VSM
as well by following its effectiveness from the literature (Rao and
Kak, 2011; Zhou et al., 2012; Thomas et al., 2013).

Zhou et al. (2012) proposed a revised VSM model that takes
in additional parameters such as the different sizes of the source
files and comparing the similarity between a new bug and pre-
viously fixed bugs. This revised model built on two hypotheses:
(1) larger source files are more likely to contain bugs, and (2) a
bug that was previously fixed can help locate the relevant files
for a similar new bug. A tool called BugLocator was developed
that demonstrated an outperforming result when compared to
previous IRBL techniques.

Meanwhile, Hill et al. (2012) undertook a study to investigate
the impact of stemming within bug localization corresponding
to different types of queries. Additionally, they compared dif-
ferent stemming algorithms, and their results proved that the
efficiency corresponds to the length of the query. DiGBUG using
stemming (STM) as one of the Pre-processing operators in its bug
localization approach.

Later, Kim et al. (2013) observed that many bugs reports do
not have sufficient information that is necessary to make a good
prediction, which ultimately makes bug localization unsuccessful.
To address this issue, they mark such bug reports as unpre-
dictable and discard them to improve localization performance.
Furthermore, they proposed a two-phase model that first checks
the localizability and only considers them predictable. The results
show that using the predictive two-phase approach, on average,
a 70% likelihood.

Saha et al. (2013) implemented BLUIR and improved the re-
sults of the BugLocator by incorporating the structural infor-
mation from the project source code. Their main observation
was that source files are structured documents, and code con-
structs such as the class name and method names can improve
localization for bug reports. The effectiveness of this technique
was evaluated against the BugLocator and showed a significant
improvement. Later Saha et al. (2014) investigated whether IRBL
approaches can work with source code that is written in a pro-
gramming language that is not based on the concept of object-
oriented programming. They found that although IRBL was effec-
tive for such source code, the integration of program structure
information did not help provide better results.

Thomas et al. (2013) investigated the consideration to be
taken in the configuration of the classifier. Their study includes
understand the use of general parameters (e.g., “Bug report rep-
resentation”, “Entity representation”, “Pre-processing steps”) and
specific parameters for each of the technique (e.g., “Term weight”,
“Similarity metric”, “Number of topics”). The experimental results
demonstrated that the configuration of the IR-based classifier
matters and one configuration (i.e., the best one in the literature)
improves results in almost all cases. According to the results of
our study, we provide insight that; the ‘one-configuration-fits-all’
strategy is not appropriate for bug localization due to the variety
of attributes of bug reports.

Wang and Lo (2014a) decided to improve the precision per-
formance by combining multiple existing information (i.e., ver-
sion history, similar bug reports, structural information). Their
tool, AmaLgam, only considers very recent version history, uses
the same bug prediction technique as Google (i.e., BugLocator).
Unlike Sisman and Kak (2012), they assigned weights of contri-
butions of each file by integrating BugLocator and BLUiR. The
proposed approach achieved 12% to 16% improvements against
BugLocator and BLUIR in terms of MAP.

While various information on bug reports and source code
were being considered, Wong et al. (2014) observed that stack

K. Kim, S. Ghatpande, K. Liu et al.

traces from the input bug reports are important elements to
consider. They divided source code into segments based on their
similarity and analyzed the stack traces to localize the correct
files to fix. They compared their results against BugLocator that
showed to outperform it. They also discovered and reported that
segmentation and stack trace analysis complement each other for
boosting performance.

Similarly, Lobster (Moreno et al., 2014) employs stack traces
by combining textual similarity between a bug report, a code
element, and the structural similarity between the stack trace
with the code elements.

To accurately rank the source code file, Ye et al. (2014) lever-
aged six features (i.e., Lexical Similarity, Collaborative Filtering
Score, Class Name Similarity, Bug-Fixing Recency, Bug-Fixing Fre-
quency, and Feature Scaling). The ranking score of each source
file is calculated as a weighted combination of former features
that are incorporating domain knowledge. At the same time,
the weights are trained previously by using the learning-to-rank
technique. They undertook the evaluation against the baselines
(i.e., VSM and Usual Suspect) and the state-of-the-art (i.e.., Bu-
gLocator, BugScout). The results showed correct recommenda-
tions within the top 10 ranked files for over 70% of the bug
reports in the Eclipse and Tomcat data, showing considerable
improvements.

Some researchers continued investigations towards refining
the complicated models. In the same, Youm et al. (2015) proposed
a combinational approach named BLIA, that statically integrates
the analytics approach by using texts and stack traces from bug
reports, AST, and code change histories. However, the results
of BLIA showed that it could not provide consistent results in
ranking the correct files compared to the state-of-the-art; MAP
and MRR values are higher than them for some subjects.

Wang et al. (2015) undertook an empirical study to evaluate
the needs and the usefulness of IRBL. The study was based on
analytical investigation supplemented by a user study. The re-
sults from the analytical study provided insights in regards to
the valuable information that is often missing from bug reports
that are needed for bug localization. Furthermore, developers can
be guided automatically to the target source code files when
high-quality bug reports are provided. This implied the marginal
impact of the IRBL. Although IRBL has limited benefits yet, pro-
viding the list of suspicious files may still help developers get
to the correct files faster. The user study results showed the
fundamental importance of user studies on the techniques to get
practical insights.

Another empirical study (Wang et al., 2015) pinpointed that
in some cases, current IRBL techniques do not help developers
in improving the bug localization. To overcome this weakness,
Wen et al. (2016) proposed Locus, which offers finer granularity
than file-level and provides important contextual clues for local-
ization. Unlike existing techniques, Locus retrieves information
from software changes instead of source code tokens. Maximum
20.5% points respectively improve the MAP and MRR on aver-
age comparing against the state-of-the-art (e.g., BRTracer (Wong
et al.,, 2014), BLUIR (Saha et al., 2013), and AmalLgam). Locus also
successfully located the bug-inducing changes within the top 5
for 41.0% of the bugs.

Wang and Lo (2016) proposed AmaLgam+, which collects and
cares for five sources of information (i.e., version history, similar
reports, structure, stack traces, and reporter information) and
integrates them with a composer. AmalLgam+ outperforms with
4% improvement on average than a prequel, Amalgam, which
outperforms the state-of-the-art. Similarly, DIGBUG considers in-
formation from attributes such as stack trace and the type of
reporter from the given bug report along with other attributes
such as code entities, descriptions, and attachments.

13

The Journal of Systems & Software 189 (2022) 111300

Panichella et al. (2016) deal with studying different approaches
for removing special characters, identifier splitting, stop word
removal, stemming, term weighting, IR engine, and similarity
measure on bug localization. As a result, they devised an approach
towards finding the best possible operators using genetic algo-
rithms. Instead of our tool DiGBUG, they worked on grouping bug
reports by different configurations rather than investigating the
best operator combination for each characteristic of bug reports.

Rahman and Roy (2018) introduce BLIZZARD, which predicts
buggy files by going through a query (i.e., bug report) refor-
mulation technique. It checks whether there are excessive pro-
gram entities (i.e., stack trace, fully natural language token-based,
program elements) or not in the incoming bug reports, then
applies different reformulations. Moreover, it leverages TextRank
(a graph-based term weighting method) for developing the Trace
Graphs instead of TF-IDF to identify important keywords. The
localization results report that BLIZZARD can outperform the
state-of-the-art, and it also improves 22% and 20% more of noisy
queries and poor queries, respectively, others.

Many researchers have applied deep learning techniques to
bug location problems. Huo et al. (2016a) adopted the use of the
pairwise learning-to-rank approach to classifying the bug reports
and source code files into linked and non-linked records. They
proposed a new architecture (called Natural Language And Pro-
gramming Language CNN) that outperformed the other state-of-
the-art bug localization models. Later, Huo et al. (2019) proposed
using an extension to the model called TRANP-CNN that leveraged
cross-project information for bug localization. The model works
by first extracting features from bug reports and source code
files of source and target projects, then generated project-specific
predictions for new bugs by the extracted features. These features
allowed a higher accurate matching of the source-code files with
the new bugs for localization. Huo and Li (2017) also proposed
another new architecture for the bug localization problem using
a combination of LSTM and CNN called LS-CNN. The LS-CNN
exploits the sequential nature of the source code such as func-
tional semantics of program and the correlation between bug
report and source code that identifies the buggy files. LS-CNN
combines LSTM and CNN for the processing, where LSTM focuses
on the extraction of semantic features and handling dependen-
cies between different source code statements while the CNN
captures the local and structural information within statements.
They compared their proposed architecture against NP-CNN, CNN,
LSTM, and other state-of-the-art bug localization approaches such
as BugLocator (Zhou et al., 2012) and HyLoc (Lam et al., 2015).

Researchers conduct similar approach (i.e., applying various
configurations) on other domains. Moreno et al. (2015) inves-
tigated the effects of various text retrieval configurations and
proposed an approach named QUEST to perform identification
of artifacts based on the configuration that is most suitable for
a given query. Also, Mills et al. (2017) evaluated the application
of automatic query quality prediction on software artifacts. They
found that their approach can predict the results by evaluating
the text in queries that increased efficiency in time manner and
efforts of the search.

7. Conclusion

Bug localization is an expensive and difficult task, especially
for large software projects. However, the benefits of an efficient
bug localization technique can improve the manner in which
developers handle and address the bugs in their projects. In
reality, use of bug localization techniques remains far from being
used due to the issues.

In this paper, we proposed our key insight that it is more
viable to consider the attributes from the bug reports for an

K. Kim, S. Ghatpande, K. Liu et al.

IR-based bug localization technique. We present DIGBUG, which
builds on this insight by leveraging the attributes extracted from
the bug reports to figure out the best-performing
pre/post-processing operators. Furthermore, we demonstrated
how the performance of bug localization is improved by DiGBuG.
This was evaluated on the dataset from Bench4BL (Lee et al.,
2018) that allows us to compare the results against state-of-the-
art techniques. The results were evaluated on a total of 9459 bug
reports as input for DIGBuG and showed an improvement of 6 and
14 percentage points in MAP and MRR, respectively.

Although our work shows a significant gain over the state-
of-the-art techniques, the results can be improved. For example,
it can apply different types pre/post-processing operators and/or
attributes from bug reports. In addition, DIGBUG can be plugged
into other IRBL techniques.

We provide a replication package with datasets and scripts as
DIGBUG, at https://github.com/FalconLK/DigBug-Dig-into-Bug

CRediT authorship contribution statement

Kisub Kim: Conceptualization, Methodology, Developing the
software, Writing - original draft. Sankalp Ghatpande: Support-
ing the development, Writing - original draft. Kui Liu: Writing —
review & editing. Anil Koyuncu: Review. Dongsun Kim: Supervi-
sion, Funding acquisition, Writing - review & editing. Tegawendé
F. Bissyandé: Supervision, Funding acquisition, Writing - review
& editing. Jacques Klein: Supervision, Funding acquisition, Write
and comment. Yves Le Traon: Supervision, Funding acquisition,
Write and comment.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: David Lo, Singapore Management University. Andreas
Zeller, CISPA. Shing-Chi Cheung, The Hong Kong University of
Science and Technology. Martin Monperrus, KTH Royal Institute
of Technology.

Acknowledgments

This work was supported by the NATURAL project, which has
received funding from the European Research Council under the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 949014, Fonds National de
la Recherche (FNR), Luxembourg, under FNR-AFR PhD/11623818,
the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. 2021R1A5A1021944 and
2021R1A5A1021944), the National Natural Science Foundation of
China (Grant No. 62172214), the Natural Science Foundation of
Jiangsu Province, China (Grant No. BK20210279), and the National
Research Foundation, Singapore, under its Industry Alignment
Fund - Pre-positioning (IAF-PP) Funding Initiative. Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore. Additionally,
the research was supported by Kyungpook National University
Research Fund, 2020.

References

Abreu, Rui, Zoeteweij, Peter, van Gemund, Arjan J.C., 2006. An evaluation of
similarity coefficients for software fault localization. In: 12th Pacific Rim
International Symposium on Dependable Computing, 2006. PRDC '06. IEEE,
pp. 39-46.

14

The Journal of Systems & Software 189 (2022) 111300

Abreu, R., Zoeteweij, P., van Gemund, AJ.C., 2007. On the accuracy of spectrum-
based fault localization. In: Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, 2007. TAICPART-MUTATION
2007. pp. 89 -98.

Antoniol, Giuliano, Ayari, Kamel, Di Penta, Massimiliano, Khomh, Foutse,
Guéhéneuc, Yann-Ga 1, 2008. Is it a bug or an enhancement? a text-based
approach to classify change requests. In: Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of
Minds. CASCON 08, Association for Computing Machinery, pp. 304-318.

Bettenburg, Nicolas, Premraj, Rahul, Zimmermann, Thomas, Kim, Sunghun, 2008.
Extracting structural information from bug reports. In: Proceedings of the
2008 International Working Conference on Mining Software Repositories.
ACM, pp. 27-30.

Binkley, Dave, Lawrie, Dawn, Uehlinger, Christopher, 2012. Vocabulary normal-
ization improves ir-based concept location. In: 2012 28th IEEE International
Conference on Software Maintenance, ICSM. IEEE, pp. 588-591.

Binkley, Dave, Lawrie, Dawn, Uehlinger, Christopher, Heinz, Daniel, 2015.
Enabling improved IR-based feature location. J. Syst. Softw. 101, 30-42.
Blei, David M., Ng, Andrew Y., Jordan, Michael L., 2003. Latent dirichlet allocation.

J. Mach. Learn. Res. 3 (Jan), 993-1022.

Chong, Wei Yen, Selvaretnam, Bhawani, Soon, Lay-Ki, 2014. Natural language
processing for sentiment analysis: an exploratory analysis on tweets. In:
2014 4th International Conference on Artificial Intelligence with Applications
in Engineering and Technology. IEEE, pp. 212-217.

DiGiuseppe, Nicholas, Jones, James A., 2014. Fault density, fault types, and
spectra-based fault localization. Empir. Softw. Eng. 20 (4), 928-967.

Dit, Bogdan, Revelle, Meghan, Gethers, Malcom, Poshyvanyk, Denys, 2013.
Feature location in source code: a taxonomy and survey.]. Softw.: Evol.
Process 25 (1), 53-95.

Django, 2013. Django Project. https://code.djangoproject.com/ticket/24117 (Last
Accessed: Oct. 2020).

Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R., 1988.
Using latent semantic analysis to improve access to textual informa-
tion. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI '88, Association for Computing Machinery, ISBN:
978-0-201-14237-2, pp. 281-285.

Gay, Gregory, Haiduc, Sonia, Marcus, Andrian, Menzies, Tim, 2009. On the use of
relevance feedback in IR-based concept location. In: 2009 IEEE International
Conference on Software Maintenance. IEEE, pp. 351-360.

Hill, Emily, Rao, Shivani, Kak, Avinash, 2012. On the use of stemming for
concern location and bug localization in Java. In: 2012 IEEE 12th Interna-
tional Working Conference on Source Code Analysis and Manipulation. pp.
184-193.

Hive, 2020. Hive-issues. https://issues.apache.org/jira/projects/HIVE/issues/ (Last
Accessed: Oct. 2020).

Huo, Xuan, Li, Ming, 2017. Enhancing the unified features to locate buggy files
by exploiting the sequential nature of source code. In: IJCAL pp. 1909-1915.

Huo, Xuan, Li, Ming, Zhou, Zhi-Hua, et al., 2016a. Learning unified features from
natural and programming languages for locating buggy source code.. In:
IJCAI vol. 16. pp. 1606-1612.

Huo, Xuan, Thung, Ferdian, Li, Ming, Lo, David, Shi, Shu-Ting, 2019. Deep transfer
bug localization. IEEE Trans. Softw. Eng..

Huo, Xuan, Thung, Ferdian, Li, Ming, Lo, David, Shi, Shu-Ting, 2019b. Deep
transfer bug localization. IEEE Trans. Softw. Eng. 1.

Jain, Anil K., Murty, M. Narasimha, Flynn, Patrick], 1999. Data clustering: a
review. ACM Comput. Surv. (CSUR) 31 (3), 264-323.

Kiling, Deniz, Yiicalar, Fatih, Borandag, Emin, Aslan, Ersin, 2016. Multi-level
reranking approach for bug localization. Expert Syst. 33 (3), 286-294.

Kim, Dongsun, Tao, Yida, Kim, Sunghun, Zeller, Andreas, 2013. Where should we
fix this bug? A two-phase recommendation model. IEEE Trans. Softw. Eng.
39 (11), 1597-1610.

Kochhar, Pavneet Singh, Tian, Yuan, Lo, David, 2014. Potential biases in bug local-
ization: do they matter? In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering. ACM, pp. 803-814.

Koyuncu, Anil, Bissyandé, Tegawendé F., Kim, Dongsun, Liu, Kui, Klein, Jacques,
Monperrus, Martin, Traon, Yves Le, 2019a. D&C: A divide-and-conquer
approach to IR-based bug localization. cs.

Koyuncu, Anil, Liu, Kui, Bissyandé, Tegawendé F., Kim, Dongsun, Monperrus, Mar-
tin, Klein, Jacques, Le Traon, Yves, 2019b. Ifixr: bug report driven program
repair. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2019, ACM, ISBN: 978-1-4503-5572-8, pp.
314-325.

Lam, An Ngoc, Nguyen, Anh Tuan, Nguyen, Hoan Anh, Nguyen, Tien N, 2015.
Combining deep learning with information retrieval to localize buggy files
for bug reports (n). In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE. IEEE, pp. 476-481.

http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb1
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb4
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb6
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb8
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb10
https://code.djangoproject.com/ticket/24117
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb13
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb14
https://issues.apache.org/jira/projects/HIVE/issues/
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb16
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb16
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb16
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb21
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb21
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb21
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb22
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb23
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb23
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb23
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb23
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb23
http://arxiv.org/abs/1902.02703
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb25
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb26

K. Kim, S. Ghatpande, K. Liu et al.

Lam, An Ngoc, Nguyen, Anh Tuan, Nguyen, Hoan Anh, Nguyen, Tien N., 2017. Bug
localization with combination of deep learning and information retrieval. In:
2017 IEEE/ACM 25th International Conference on Program Comprehension,
ICPC. pp. 218-229.

Lee, Jaekwon, Kim, Dongsun, Bissyandé, Tegawendé F. Jung, Woosung,
Le Traon, Yves, 2018. Bench4bl: reproducibility study on the performance
of IR-based bug localization. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018, ACM,
pp. 61-72.

Liu, Guangliang, Lu, Yang, Shi, Ke, Chang, Jingfei, Wei, Xing, 2019. Mapping bug
reports to relevant source code files based on the vector space model and
word embedding. IEEE Access 7, 78870-78881.

Loyola, Pablo, Gajananan, Kugamoorthy, Satoh, Fumiko, 2018. Bug localization
by learning to rank and represent bug inducing changes. In: Proceedings
of the 27th ACM International Conference on Information and Knowledge
Management. ACM, pp. 657-665.

Lukins, Stacy K., Kraft, Nicholas A., Etzkorn, Letha H., 2010. Bug localization using
latent dirichlet allocation. Inf. Softw. Technol. 52 (9), 972-990.

Mann, H.B., 1947. On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18 (1), 50-60.

Mills, Chris, Bavota, Gabriele, Haiduc, Sonia, Oliveto, Rocco, Marcus, Andrian,
Lucia, Andrea De, 2017. Predicting query quality for applications of text
retrieval to software engineering tasks. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 26 (1), 1-45.

Moreno, Laura, Bavota, Gabriele, Haiduc, Sonia, Di Penta, Massimiliano,
Oliveto, Rocco, Russo, Barbara, Marcus, Andrian, 2015. Query-based con-
figuration of text retrieval solutions for software engineering tasks. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 567-578.

Moreno, Laura, Treadway, John Joseph, Marcus, Andrian, Shen, Wuwei, 2014. On
the use of stack traces to improve text retrieval-based bug localization. In:
2014 IEEE International Conference on Software Maintenance and Evolution.
pp. 151-160.

Panichella, Annibale, Dit, Bogdan, Oliveto, Rocco, Penta, Massimiliano Di, Poshy-
vanyk, Denys, Lucia, Andrea De, 2016. Parameterizing and assembling
IR-based solutions for SE tasks using genetic algorithms. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering,
SANER, vol. 1. pp. 314-325.

Qi, Binhang, Sun, Hailong, Yuan, Wei, Zhang, Hongyu, Meng, Xiangxin, 2021.
DreamLoc: A deep relevance matching-based framework for bug localization.
IEEE Trans. Reliab. 1-15. http://dx.doi.org/10.1109/TR.2021.3104728.

Rahman, Shanto, Rahman, Md Mostafijur, Sakib, Kazi, 2017. A statement level
bug localization technique using statement dependency graph. In: ENASE.
pp. 171-178.

Rahman, Mohammad Masudur, Roy, Chanchal K., 2018. Improving IR-based bug
localization with context-aware query reformulation. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018,
ACM, ISBN: 978-1-4503-5573-5, pp. 621-632.

Rao, Shivani, Kak, Avinash, 2011. Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models. In:
Proceedings of the 8th Working Conference on Mining Software Repositories.
ACM, pp. 43-52.

Rath, Michael, Lo, David, Mdder, Patrick, 2018. Analyzing requirements and
traceability information to improve bug localization. In: 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories, MSR. IEEE, pp.
442-453.

Saha, Ripon K. Lawall, Julia, Khurshid, Sarfraz, Perry, Dewayne E., 2014. On
the effectiveness of information retrieval based bug localization for C
programs. In: 2014 IEEE International Conference on Software Maintenance
and Evolution. (ISSN: 1063-6773) pp. 161-170.

Saha, R. K,, Lease, M., Khurshid, S., Perry, D. E., 2013. Improving bug localization
using structured information retrieval. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE. pp. 345-355.

Salton, G., Wong, A., Yang, CS., 1975. A vector space model for automatic
indexing. Commun. ACM 18 (11), 613-620.

Schroter, Adrian, Schroter, Adrian, Bettenburg, Nicolas, Premraj, Rahul, 2010. Do
stack traces help developers fix bugs? In: 2010 7th IEEE Working Conference
on Mining Software Repositories, MSR 2010. IEEE, pp. 118-121.

Sisman, Bunyamin, Kak, Avinash C. 2012. Incorporating version histories in
information retrieval based bug localization. In: 2012 9th IEEE Working
Conference on Mining Software Repositories, MSR. (ISSN: 2160-1860) pp.
50-59.

Sun, Fan, Belatreche, Ammar, Coleman, Sonya, McGinnity, T Martin, Li, Yuhua,
2014. Pre-processing online financial text for sentiment classification: A
natural language processing approach. In: 2014 IEEE Conference on Com-
putational Intelligence for Financial Engineering & Economics, CIFEr. IEEE,
pp. 122-129.

15

The Journal of Systems & Software 189 (2022) 111300

Tantithamthavorn, Chakkrit, Abebe, Surafel Lemma, Hassan, Ahmed E, Ihara, Aki-
nori, Matsumoto, Kenichi, 2018. The impact of ir-based classifier configura-
tion on the performance and the effort of method-level bug localization. Inf.
Softw. Technol. 102, 160-174.

Thomas, Stephen W, Nagappan, Meiyappan, Blostein, Dorothea,
Hassan, Ahmed E, 2013. The impact of classifier configuration and classifier
combination on bug localization. IEEE Trans. Softw. Eng. 39 (10), 1427-1443.

Tian, Yuan, Wijedasa, Dinusha, Lo, David, Le Goues, Claire, 2016. Learning to rank
for bug report assignee recommendation. In: 2016 IEEE 24th International
Conference on Program Comprehension, ICPC. IEEE, pp. 1-10.

Wang, Shaowei, Lo, David, 2014a. Version history, similar report, and structure:
putting them together for improved bug localization. In: Proceedings of the
22Nd International Conference on Program Comprehension. ICPC 2014, ACM,
pp. 53-63.

Wang, Shaowei, Lo, David, 2014b. Version history, similar report, and structure:
putting them together for improved bug localization. In: Proceedings of the
22nd International Conference on Program Comprehension. ACM, pp. 53-63.

Wang, Shaowei, Lo, David, 2016. Amalgam+: Composing rich information
sources for accurate bug localization.]J. Softw.: Evol. Process 28 (10),
921-942.

Wang, Qiangian, Parnin, Chris, Orso, Alessandro, 2015. Evaluating the usefulness
of IR-based fault localization techniques. In: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis. ISSTA 2015, Association
for Computing Machinery, ISBN: 978-1-4503-3620-8, pp. 1-11.

Wen, Ming, Wu, Rongxin, Cheung, Shing-Chi, 2016. Locus: locating bugs from
software changes. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering. ACM, Singapore, Singapore, pp.
262-273.

Wicket, 2020. Wicket-issues. https://issues.apache.org/jira/projects/WICKET/
issues/ (Last Accessed: Oct. 2020).

Wong, W.E., Gao, R, Li, Y., Abreu, R, Wotawa, F., 2016. A survey on software
fault localization. IEEE Trans. Softw. Eng. 42 (8), 707-740.

Wong, Chu-Pan, Xiong, Yingfei, Zhang, Hongyu, Hao, Dan, Zhang, Lu, Mei, Hong,
2014. Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis. In: 2014 IEEE International Conference on Software
Maintenance and Evolution. (ISSN: 1063-6773) pp. 181-190.

Xiao, Yan, Keung, Jacky, Bennin, Kwabena E., Mi, Qing, 2019. Improving bug local-

ization with word embedding and enhanced convolutional neural networks.

Inf. Softw. Technol. 105, 17-29.

Xin, Bunescu, Razvan, Liu, Chang, 2014. Learning to rank relevant files for

bug reports using domain knowledge. In: Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering.

FSE 2014, Association for Computing Machinery, ISBN: 978-1-4503-3056-5,

pp. 689-699.

Youm, K. C, Ahn,], Kim, J., Lee, E., 2015. Bug localization based on code
change histories and bug reports. In: 2015 Asia-Pacific Software Engineering
Conference, APSEC. pp. 190-197.

Youm, Klaus Changsun, Ahn, June, Lee, Eunseok, 2017. Improved bug localization
based on code change histories and bug reports. Inf. Softw. Technol. 82,
177-192.

Zhou, Jian, Zhang, Hongyu, Lo, David, 2012. Where should the bugs be fixed?
- More accurate information retrieval-based bug localization based on bug
reports. In: Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, Piscataway, NJ, USA, pp. 14-24.

Ye,

Kisub Kim is a Research Scientist at the Singapore Management University. He
holds a Ph.D. in computer science from the University of Luxembourg and an
engineering degree (MSe) from Chungbuk National University in South Korea.
His research interests include code search, bug localization, and bug patch
generation applying machine learning techniques.

Sankalp Ghatpande is an Independent Researcher based in Luxembourg. He
received his M.S degree from University of Luxembourg in 2016. Since 2016, he
has worked in industry and academic R&D projects, national and international,
as Engineer focused on Blockchain, IoT and Cryptography. He has also been
active in multiple volunteering projects involving implementations of specific
software(s), code analysis and multiple open source projects. Recently, he has
been involved in data analysis and machine learning project within the financial
domain with industrial partner.

Kui Liu is a Research Scientist at Huawei. He holds a Ph.D. in computer from the
University of Luxembourg in 2019 and an engineering degree from Southwest
University, China, in 2013. His current research focuses on automated program
repair, automated fault localization, and advanced software engineering.

Anil Koyuncu is Assistant Professor of Sabanci University. He holds a Ph.D. in
computer from the University of Luxembourg in 2021, and Master’s degree from
Politecnico di Milano, Italy. His research interest includes automatic patch repair,
fault localization.

http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb27
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb28
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb30
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb31
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb31
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb31
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb32
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb32
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb32
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb34
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb35
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb36
http://dx.doi.org/10.1109/TR.2021.3104728
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb38
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb38
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb38
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb38
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb38
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb39
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb40
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb41
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb42
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb43
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb43
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb43
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb43
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb43
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb44
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb44
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb44
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb45
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb46
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb47
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb48
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb49
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb49
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb49
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb49
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb49
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb50
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb50
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb50
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb50
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb50
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb52
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb52
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb52
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb52
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb52
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb53
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb53
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb53
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb53
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb53
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb54
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb55
https://issues.apache.org/jira/projects/WICKET/issues/
https://issues.apache.org/jira/projects/WICKET/issues/
https://issues.apache.org/jira/projects/WICKET/issues/
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb58
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb61
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb61
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb61
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb61
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb61
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb62
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb62
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb62
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb62
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb62
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63
http://refhub.elsevier.com/S0164-1212(22)00052-8/sb63

K. Kim, S. Ghatpande, K. Liu et al.

Dongsun Kim is Assistant Professor of the School of Computer Science at
Kyungpook National University. He was formerly software engineer at Furiosa.ai,
research associate at the University of Luxembourg, and post-doctoral fellow
at the Hong Kong University of Science and Technology. His research interest
includes testing Al systems, automatic patch generation, fault localization, static
analysis, and search-based software engineering. In particular, automated debug-
ging is his current focus. His recent work has been recognized by several awards,
such as a featured article of the IEEE Transactions on Software Engineering
(TSE) and ACM SIGSOFT Distinguished Paper of the International Conference on
Software Engineering (ICSE). He has led the FIXPATTERN project funded by FNR
(Luxembourg National Research Fund) CORE programme. He is now leading the
PreDebugging project funded by NRF (National Research Foundation of Korea)
Regional Researcher Program.

Tegawendé F. Bissyandé is Associate Professor with the Interdisciplinary Center
for Security, Reliability and Trust at the University of Luxembourg. He holds a
Ph.D. in computer from the Université de Bordeaux in 2013, and an engineering
degree (M.Sc.) from ENSEIRB. His research interests are in debugging, including
bug localization and program repair, as well as code search, including code
clone detection and code classification. He has published research results in all
major venues in Software engineering (ICSE, ESEC/FSE, ASE, ISSTA, EMSE, TSE).
His research is supported by FNR (Luxembourg National Research Fund). Dr.
Bissyandé is the PI of the CORE RECOMMEND project on program repair, under
which the current work has been performed.

16

The Journal of Systems & Software 189 (2022) 111300

Jacques Klein is Associate Professor at the University of Luxembourg, and at
the Interdisciplinary Centre for Security, Reliability and Trust (SnT). He received
his Ph.D. degree in Computer Science from the University of Rennes, France in
2006. His main areas of expertise are threefold: (1) Mobile Security (malware
detection, prevention and dissection, static analysis for security, vulnerabil-
ity detection, etc.); (2) Software Reliability (software testing, semi-automated
and fully-automated program repair, etc.); (3) Data Analytics (multiobjective
reasoning and optimization, model-driven data analytics, time series pattern
recognition, text mining, etc.). In addition to academic achievements, Dr. Klein
has also standing experience and expertise on successfully running industrial
projects with several industrial partners in various domains by applying data
analytics, software engineering, information retrieval, etc., to their research
problems.

Yves Le Traon is Full Professor of Computer Science at University of Luxembourg,
in the domain of software engineering, with a focus on software testing,
software security, and dataintensive systems. He is currently vice-director of the
Interdisciplinary Centre for Security, Reliability and Trust (SnT center) and head
of the SerVal group (SEcurity, Reasoning and VALidation), which is composed of
around 25 researchers. He was head of the CSC Research Unit (Dept. of Computer
Science) for the period of 2013-2016.

	DigBug—Pre/post-processing operator selection for accurate bug localization
	Introduction
	Background motivation
	Bug localization IRBL
	Pre/post-processing operators for IRBL
	Performance metrics

	Preliminary study
	Subjects
	Study design
	Results

	 — Operator Selector for IRBL
	Attribute extraction
	Bucketing
	Searching for the best-performing combination
	Localization

	Evaluation
	Experimental setup
	Dataset
	Experimental results
	Threats to validity
	Discussion future work

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

